domingo, 27 de octubre de 2013

24 de octubre

FUNCIONES IMPLÍCITAS
Una función y(x) se llama implícita cuando está definida de la forma F(xy) = 0 en lugar de la habitual.
Por ejemplo, puede probarse que la siguiente ecuación define una función implícita en cierta región de \mathbb{R}^2 entre las variables x e y:
 y^3 + y^2 + 5xy + x^2 + x + y = 0 \,

DIFERENCIACIÓN:
Para poder derivar una función implícita se usa la regla de la cadena, en el caso de la variable independiente no hay problema ya que se deriva directamente, para la variable dependiente se considera como una función que a su vez está en función de la variable independiente:
Dada una función  F(x,y) \,, implícita, si queremos calcular la derivada de y respecto de x \frac{dy}{dx} = f'(x) .
Si consideramos  y = f \left ( x \right )  es una función en términos de la variable independiente x y  G \left ( y \right )  es una función en términos de la variable dependiente y, dado que  y = f \left ( x \right ) , entonces para obtener la derivada:
 D_x \left ( G \left ( y \right ) \right ) = D_x \left ( G \left ( f \left ( x \right ) \right ) \right ) = G' \left ( f \left ( x \right ) \right ) \left ( f' \left ( x \right ) \right )


Las derivadas de orden superior de una función implícita se pueden calcular mediante la derivación sucesiva de la fórmula anterior, considerando como función de x.
Las derivadas parciales de una función implícita de dos variables definida mediante la ecuación puede calcularse mediante las fórmulas:
, siempre que 
Dada la ecuación Si el punto cumple la ecuación , la función F tiene derivadas parciales continuas en un entorno de entonces la ecuación define una función explícita en un entorno decon
Dada la ecuación Si el punto cumple la ecuación , la función F tiene derivadas parciales continuas en un entorno de entonces la ecuacióndefine una función explícita en un entorno de dicho punto.

EJEMPLOS:
Calcula y, siendo
Tenemos
hallamos las derivadas parciales:
;;
Por lo tanto:
:
Calcula y', siendo
Tenemos
hallamos las derivadas parciales:
;
Por lo tanto:

Semana 10: Máximos y mínimos relativos y absolutos

ESCUELA POLITÉCNICA NACIONAL
FACULTAD: Ingeniería Mecánica
NOMBRE: Johana Yaselga



viernes, 11 de octubre de 2013

Semana 9: Gradiente, derivada direccional

ESCUELA POLITÉCNICA NACIONAL
FACULTAD: Ingeniería Mecánica
NOMBRE: Johana Yaselga
FECHA: 02-10-2013



Semana: 07-10 de octubre

INCREMENTOS TOTAL Y PARCIALES DE UNA FUNCIÓN DE DOS VARIABLES

Para funciones de una variable $\,y = f(x)\,$, se define el incremento de $\,y\,$ como 
\begin{displaymath}\Delta y \, = \, f(x + \Delta x) - f(x) \end{displaymath}

y la diferencial de $\,y\,$ como 
\begin{displaymath}dy\,=\,f'(x)dx\end{displaymath}

$\,\Delta y\,$ representa el cambio en la altura de la curva $\,y\,=\,f(x)\,$ y $\,dy\,$ representa la variación en $\,y\,$ a lo largo de la recta tangente cuando $\,x\,$ varía en una cantidad $\,dx\,=\,
\Delta x\,$.
En la siguiente figura se muestra $\,df\, \, \mbox{y} \, \, \Delta f\,$.
Figura 1: diferencial
 

Observe que $\,\Delta y - dy\,$ se aproxima a cero más rápidamente que $\,\Delta x\,$, ya que 
$\,\displaystyle{\epsilon\,= \, \frac{\Delta y - dy}{\Delta x}\, = \,
\frac{f(x ...
...x)\Delta x}{\Delta x}\, = \, \frac{f(x + \Delta x) - f(x)}{\Delta x} - f'(x)}\,$
y al hacer $\,\Delta x \longrightarrow 0\,$, tenemos que $\,\epsilon \longrightarrow 0\,$
Por tanto
\begin{displaymath}\Delta y \, = \, dy + \epsilon\, \Delta x\end{displaymath}


donde $\,\epsilon \longrightarrow 0\,$ conforme $\,\Delta x \longrightarrow 0\,$
 

Ahora consideremos una función de dos variables $\,z\, = \, f(x, y)\,$
Si $\,x\,$ y $\,y\,$ son incrementados $\,\Delta x\,$ y $\,\Delta y\,$, entonces el correspondiente incremento de $\,z\,$ es 
\begin{displaymath}\Delta z\, = \, f(x + \Delta x, y + \Delta y) - f(x, y)\end{displaymath}


Con lo cual $\,\Delta z\,$ representa el cambio en el valor de $\,f\,$ cuando $\,(x,
y)\,$ cambia a $\,(x + \Delta x, \; y + \Delta y)\,$.


Sean $\,f :\,D \subset \mathbb{R}^{2}\, \longrightarrow \mathbb{R}\,$una función escalar y $\,\Delta x\,$ y $\,\Delta y\,$ incrementos de $\,x\,$ y de $\,y\,$, entonces la diferencial total de la variable dependiente $\,z\,$ es 
\begin{displaymath}dz\, = \, f_{x}(x, y)\Delta x + f_{y}(x, y)\Delta y\end{displaymath}



DERIVADA DIRECCIONAL

Se llaman derivadas direccional de la función z = f(x,y) en un punto P(x,y) en el sentido del vector el siguiente límite si existe y es finito:
Para calcular este límite se toma el vector unitario de la dirección del vector (dividiéndolo por su módulo). Llamamos a la longitud del vector , es decir,con lo cual , de donde , y el límite se reduce a la única variable t
Si la función f(x, y) es diferenciable, entonces la derivada direccional se calcula por la fórmula:
(es decir la suma de los productos de las parciales por las componentes del vector unitario)
Si la función es de tres variables z=f(x, y, z) la derivada direccional se calcula de manera análoga:
(Las parciales habrá que calcularlas en el punto correspondiente. Las componentes del vector unitario coinciden con los cosenos directores del vector director. Si la función no es diferenciable esta fórmula no es válida y hay que calcular el límite anterior).

Se llama gradiente de una función z = f(x, y) en un punto P(x, y) al vector que sale del punto P y sus componentes son las derivadas parciales de la función en dicho punto
La derivada direccional se puede obtener como el producto escalar del gradiente por el vector unitario (si la función es diferenciable)
El gradiente indica el sentido de crecimiento más rápido de una función en un punto dado. La derivada direccional tiene su valor máximo en el sentido del gradiente y coincide con su módulo:
Si la función es de tres variables u = f(x, y, z) el gradiente se define de forma análoga: